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Two theoretical approaches have been taken to gas-liquid partition chromatography 
(G.L.C.)--the first may be termed the plate theory and the second the rate theory. 
The major results of both theories have been summarized by KEULEMANSI:The 
plate theory or H.E.T.P. method has been used successfully to analyze experimental 
data  by MARTIN AND SYNGE 2, MAYER AND TOMPKINS 3, GLUECKAUF 4 and VAN 
DEEMTER, ZUIDERWEG AND KLINKENBERG~.The main drawback of the plate theory 
is that the H.E.T.P. is a semi-empirical quanti ty that  is calculated from the elution 
curve and although it serves as a concept by which the experimental data may be 
analyzed and explained, it is not a quanti ty fundamental enough to be derived 
solely from the physical properties of the system. On the other hand, the rate theory 
begins by formulating the partial differential equations" governing G.L.C. such that 
the physical properties of the system occur as coefficients. Because the resulting 
equations are too complex to solve analytically it is usual to make three simplifying 
assumptions. : 

I. The equilibrium concentrations in tile gas and liquid phases are directly 
proportional (linear chromatography). 

2. Equilibrium between liquid and vapor phases is established immediately 
(instantaneous equilibrium). 

3. Axial diffusion may be neglected. 
Chromatography subiect to the above assumptions is commonly called ideal 

chromatography, and theories of ideal 'chromatography have been developed by 
BOYD, ADAMSON AND MYERS s, LAPIDUS AND AMUNDSON 7, KLINKENBERG s, and 

THOMAS 9. GIDDINGS AND EYRING TM, however, have treated the diffusional processes 
involved by the random walk method, thus .obtaining an interesting molecular 
theory of chromatography.The main drawback to the rate theory, apart from the 
above assumptions, is that,  in order to simplify the differential equations for solution, 
it is necessary to introduce an arbitrary rate constant, usually a mass transfer coeffi- 
cient or a reaction velocity constant, whose value is obtained by fitting the analytical 
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solution to the elution curve. However, VAN DEEMTER et al. 5 have discussed a method 
of estimating the rate constant from the physical properties of the system, subject to 
the assumptions of ideal chromatography. 

The object of the present work is to remove some or all of the restrictions in- 
volved in the assumption of ideal chromatography and to devise a method, based 
on the rate theory, to predict the shape and position of the elution curve from the 
physical properties of the system alone without the use of an arbi trary rate constant. 
This has been accomplished (c/. FUNK AND HOUGHTON 11) by  using a lumped-film 

model for the liquid phase. All three restrictions involved in the assumption of ideal 
chromatography are removed by programming the differential equations on an 
IBM-7o 4 digital computer using finite difference methods. The computer solution 
can also be used to account for the effects of nonlinear solubility and column pressure 

drop. Analytical solutions will also be reported in Part  I I  for the cases where the 
restrictions of instantaneous equilibrium and/or no longitudinal dispersion are rc- 

moved. 

THE PARTIAL DIFFERENTIAL EQUATIONS OF NON-IDEAL CHROMATOGRAPHY 

There are three phases present in G.L.C.--a  flowing vapor phase and a s ta t ionaly 
involatile liquid phase coated on to an impermeable solid phase. A binary system is 
assumed with a solute and carrier gas in the vapor  phase and solute and solvent in 
the liquid phase. The one-dimensional continuity equation for the vapor  phase is: 

) E X  O~P . . . .  OX E O2X u 2E  OP OX __haRTA ( X  - -  X , )  4- - -  - -  (I) 
c~t cOz~ P ~-z ~9z e ' P ~,z~ 

If the gas flow in the packed bed is laminar and unidirectional, then Darcy's  law 
may be applied as follows: 

K P  d P  
u (2) 

r I dz  

Also for compressible flow: 
u P  = u,P~ (3) 

Solution of eqns. (2) and (3) yields (c[. KEULEMANSI): 

whence: 

,4/ p d z p = _ _  ~ ( p , 2  _ _  p o  2) 

~P I (p ,2  __ p j )  

az P 2L 

(4) 

(5) 

~2p i (.pf2 ____ po,;) 2 
~z2 - -  /Sa k 2 L  (6) 

For the liquid phase it is assumed that  the diffusion coefficient, DL,  is independent of 
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concentration and that diffusion in the thin uniform film of partitioning liquid is 
unidirectional, so that : 

Oc 02c 
- -  = D ~ - -  ( 7 )  ot oy~ 

If it is assumed that  there is a gas film resistance of the Whitman type at the interface 
between the liquid and vapor phases, the concentration changes are depicted in Fig. I 
as a function of time as the solute passes into the liquid phase and is eluted out again. 
The boundary conditions to be applied to eqn. (7) may be obtained by referring to 
Fig. I. and are as follow: 

. g ~  h 

(o;) D L  = k a P ( X  - -  X~) 
Y = O  

(9) 

where k a  is the Whitman gas film coefficient. 
The final equation that couples the vapor phase and liquid phase equations is 

the equilibrium solubility isotherm: 

c~ = K I P X ~  -'k K i P 2 X i  ~ (xo) 

Gas film Liquid film 

X'lc' 

y~YU [ 
= y=h 

Fig. I. Concentration distributions in the liquid film as a function of time; (a) variable depth of 
penetration, (b) assuming constant depth of penetration. 

Equation (Io) has a nonlinear term that allows for non-ideality in the liquid phase. 
The general assumptions used in the derivation of the above equations are 

enumerated below: 

(I) Uniform one-dimensional flow through a uniformly-packed bed. 

(2) Longitudinal dispersion in the gas phase can be adequately represented by 
an eddy diffusivity, E ,  which is independent of position and concentration. 
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(3) The presence of a Whitman-type 12 gas film resistance, ka,  at the gas-liquid 
interface. 

(4) The diffusion coefficient in the liquid phase, DL, is independent of concen- 
tration. 

(5) Pressure drops through the bed are governed by Darcy's law. 
(6) Ideal gases and gas mixtures. 
In order to conveniently solve tile above equations, it is necessary to formulate 

a model that will eliminate the independent variable, y. This has been accomplished by 
representing the liquid film as a lumped system using finite difference techniques. 

THE LUMPED-FILM MODEL FOR THE LIQUID PHASE 

The function c(z,y,t) can be expanded about some point Y0 in the liquid film by means 
of Taylor's series so that the second derivative becomes: 

O~c(z,y,t) I [c(z,yo - -  Ay,t) - -  c(e,yo,t)] 
~y~ Ay ~ L ] 

~ m  

1 
/1~2 [C(•,yo,t)- C(g,y 0 + Z~y,t)] (II)  

If Ay is always required to be the distance from the surface of the liquid film to the 
lumping point, Yo, then eqn. (9) may be approximated by: 

DL [¢*--~-~ 'y°'')] = k e . P ( X - -  X,)  (,2) 

If  ay is also the distance from the lumping point to the surface of the sohd, eqn. (8) 
leads to the approximation: 

c(z,yo,t)- c(z,yo + Ay,t) 
= O (I3) 

Ay 

The only way for Ay to satisfy both of the above requirements is for m in Fig. I to be 
i/2. In this case, eqns. (7), (II), (12) and (13) may be combined to give a single-section 
lumped-film model represented by the following differential-difference equation: 

~Cm D L 
e----t = /ly2 (Cf - -  Cm) (I4) 

where: 
Cm = c.(g,h/2fl 0 

and: 
..dy 2 = h/2 (15) 

It  is evident that  a single-section approximation will only apply when the liquid film 
is thin, so that the depth of penetration is of the order of one-half the film thickness. 
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This argument  leads to the possibility of m having an average value other  than  1/2, 
and this case will be t reated in Par t  I I  as the penetra t ion model. 

ELIMINATION OF INTERFACIAL CONCENTRATIONS FROM THE EQUATIONS 

For the case of a nonlinear solubility isotherm, subst i tut ion of eqn. (12) into eqn. (IO) 

eliminates c, and leads to the following quadrat ic  in X, :  

where: 
K 3 X ,  2 + K 4 X ~ -  ( k G P X  + DLCm/Ay) = o 

D LK2P 2 
K3-- 

Ay 

Solving for X,  we obtain:  

D LK1P 
K4 -- + k a P  

Ay  

where; 
X ,  : - -  145/2 -4- ~K5"~/4 + ( k o P X  + DLCmlAy)/K3 

I~5 = K4/K3 

(i6) 

(17) 

(is) 

(19) 

(20) 

Equat ion  (19) m a y  now be used to elimate X , :  from eqn. (I) for the case of nonlinear 
solubility. 

The case of a linear solubility isotherm m a y  be obtained by  lett ing K 3 -* 0 in 

eqn. (19) and using the positive sign in front of the square root, so tha t :  

where: 
X ,  = Ke, X + KTCm (21) 

K6 = k a P / K 4  (22) 

K7 = D L/AyK4  (23) 

Equat ion  (21) m a y  be used to eliminate X,  from eqn. (I) for the case of linear sol- 
ubility. 

INITIAL AND BOUNDARY CONDITIONS 

Fig. 2 shows the conditions for an initial value problem tha t  is closely allied to the 
experimental  conditions actual ly found in G.L.C. The slug of solute of mole fraction 
X 0 is t rapped  between two gates tha t  can be opened simultaneously at t = o + to 

introduce the so!ute into the carrier gas stream. I t  is assumed tha t  the flow is estab- 

lished ins tantaneously  and tha t  there are no end effects in the column. The initial 

SLUG COLUMN 

c A ~  V////////////////////A i -  
f I t  I I  

z=O L, L~ , L 4 

Fig. 2. The initial value problem of G.L.C. 
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conditions for this case are then: 

iXo, o < z < L1 
X(z,o) = I o, " z > LI (24) 

c , ( z ,o )  = Cm(Z,O) = o, L2  < z < L s  

and the boundary conditions are: 

[u, Lz < z < La 
Gas velocity 

ue, z < L~ and z > L3 
(25) 

ika, L~ < z < Lz 
Gas film coefficient 

o, z < L ~ a n d z > L a  

The solution to the problem is the mole fraction of solute in the gas phase passing the 
detector as a function of time, X (L4,t), and can be obtained by  solving the differential 
equations in finite difference form. The numerical solution obtained completely 
removes the restrictions of ideal chromatography and can therefore be used to account 
for the effects of nonlinear solubility, finite diffusion rates, axial diffusion and column 

pressure drop. 

FINITE DIFFERENCE EQUATIONS 

In order to obtain the difference equations in a form explicit in the variables X and cm, 
the finite difference approximations are made forward in t ime and backward in 

space as follows: 
~'~x  = x ( ~  + i , i )  - -  2 x ( i , i )  + x 6  - -  ~. i)  (26) 
Oz 2 Az" 

e x  x ( i , i )  - -  x ( i  - -  i , i )  
- -  = (27)  
Oz Az 

OX _ X ( i d  + ~ ) -  X(i,]) (28) 
at At 

OCr. C . , ( i , i  + ~ ) -  C , . ( i d )  

Ot At 
(29) 

The finite difference equations are obtained by  substituting eqns. (26), (27), (28) 
and (29) into eqns. (I) and (14) and using eqns. (19) or (21) to eliminate X,. The results 

for nonlinear and linear isotherms are summarized below: 

I. Nonl inear  solubility isotherm 

X(i ,  i + i) = f l , (P)X(i , j)  + f l ~ ( P ) X ( i -  i,]) + fl3(P)X(i + i,]) + 

+ ko(i)RTAAt_~ [ - -  Ks(i)~2 + JKs'~(i)/4 + (ko(i)P(i)X(i,]) + Dr.cm(id)/Ay)/K3(i) ] (3 o) 

j .  Chromatog., 6 (1961) 193-2o8 
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[ k a ( i ) P ( i ) A t ]  
cm(i,j + I )  = Cm(i,i ) 4- [ ~y -] X ( i , ] ) -  (3i) 

ko(i)P(i)At [ 
[ - -  K5(i)/2 + 

Ay 
where: 

2EAt u(i)At 
ill(P) = I Az 2 Az 

K52(i)/4 + (ka(i)P(i)X(id) + DLCm(i,i)/Ay)/K3(i)] 

2EAt dP(i) ka( i )RTAAt  E d~P(i) 
+ + (3 2 ) 

AzP(i) dz e P(i) dz ~ 

u(i)At 2EAt dP(i) EAt 
B~(P) -- + - -  (33) 

Az AzP(i) dz Az ~ 

2. L inear  solubil i ty isotherm 

EAt 
fla(P) -- A, 2 (34) 

X(i,  i + I) = fl~(P)X(i - -  I,i) + fla(P)X(i + I,i) + f l4(P)X(ij)  + fl~(P)cm(ij) (3.5) 

where: 
c, .( i , j  + i) = fln(P)cm(i,i) + fl2(P)X(i,i) 

fl4(P) = I 
2EAt u(i)At 2EAt dP(i) E d~P 

+ + 
Az 2 Az AzP(i) dz P(i) dz 2 

(36 ) 

- -  Ks(i)ADLK1RTAt/Aye 

fls(P) = KT(i)ka(i)ARTAt/e 

/J6(P) = I - -  Ko(i)DLAt/Ay 2 

B2(P) = K6(i)P(i)DLK1At/Ay '~ 

(37) 

(38) 

(39) 

(4o/ 

The coefficients fl(P) are functions of pressure and therefore eqns. (3), (4),.(5) and (6) 
must  be utilized to evaluate the pressure dependence. 

The above equations m a y  be solved by  dividing the chromatographic  column 

into axial increments, 3z, such tha t  z = iAz, and using t ime increments a t  such tha t  
t = /'At. The numerical solution is then obtained by  a marching process, s tart ing 

with the initial conditions and using two t ime-dis tance grids, one for X and the other 
for c,r,.The equations have been programmed in For t ran  language for an IBM-7o 4 
digital computer.  

STABILITY AND CONVERGENCE OF THE NUMERICAL SOLUTION 

In  the numerical solution of partial  differential equations by  finite differences, the 

concepts of stabil i ty and convergence are very  important .  The term convergence is 

used to denote how close the solution of the difference equations approaches the 

exact solution of the differential equations in the limit as the size of the increments 

(A z and Z t) is reduced to zero. The relationship between Az and At is determined, how- 

ever, by  the stabil i ty criterion. If  the error is defined as the depar ture  of tile numer-  
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ical solution from the exact solution, then stability deals with the growth and am- 
plification of this error. 

The cause of instability in the numerical solution of partial differential equations 
has been discussed by  a number of writers is-15, some of whom attribute instability 

to round-off errors, while others claim that  it is inherent in the difference equations. 
RICHTMYER 15 has shown that  in the numerical solution of the simple parabolic heat 

equation, instability may not be concerned with round-off errors, but rather is the 

property of the particular system of difference equations. The same view is taken in 
the present work, even though the same formal results can be achieved by  considering 
the problem as one of propagation of round-off error, as discussed by HOUGHTON 16. 

A differential equation is said to be unstable if it yields an unbounded output for 

a bounded input. This behavior is an inherent characteristic of the equation. To 
extend this concept to difference equations, it is only necessary to state that  a stable 
solution will result if the coefficients of the difference equations are fixed so that  the 
output  is bounded for any bounded input. The fact that  the bounded input may be 

round-off error (among other forms of disturbance) provides a connection with the 

round-off method of determining instability. For the case of constant pressure 

(d.P/dz = o and d2P/dz 2 = o) with a linear solubility isotherm, eqns. (35) and (36) 
become: 

X(i,] + I) = o~2X(i - -  I , j )  4- o~3X(i -~ I , j )  -~ 6g4X(i,i ) -- o¢5Cm(i,] ) (4 I)  

where: 
Cm(~',]" ~- I)  = ~Cm(i,i) + a7X(i,~) (42 ) 

uAt EAt 
ce2 = -A- f  ÷ A z  ~ (43) 

E A t  

~3 = A z  2 (44) 

0~4 ~ I 
2 E A t  u A t  

A z  2 A z  K 6 A D L K 1 R T A t / A y e  (45) 

~5 = K T k a A R T A t / e  (46) 

~6 = I - -  K 6 D L A t / A T  2 (47) 

~7 = K 6 P D L K 1 A t / A y  2 (48 ) 

If $x(i,i) is assumed to be any bounded disturbance along the/'tn row of the X grid 
and 8c(i,j) is any bounded disturbance along the ~'th row of the Cm grid, a sufficient 
condition for the output of the difference equations to be bounded is: 

I,~x(i,j + *) I ~ I ~x(i,f) I (49) 

I cs.,(i,i + ~) I ~ j csc(:,,/) L (50) 
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Using the triangle inequality, it is easily shown that eqns. (49) and (5 o) are satisfied 
for eqns. (41) and (42) if: 

1~21 + =31 + =~I + 1~51 < i  (50 

~61 + :~1 <~I (52) 

Substituting the values of a from eqns. (43) to (48) into eqns. (51) and (52), the stability 
criteria become: 

I 
At <~ 

2E u kaRT ADL K 1  
- - ~ - - - -  + - -  (53) 
Az 2 ' Az eAy \ Ay + 

(DLKI ha) AY z \ ~ y -  + 

At ~ (54) 
D LkG 

It should be noted that eqn. (53) reduces to the criterion for the simple parabolic 
diffusion equation (i.e., At <~ Az2/2E) if there is no flow (u = o) and no mass transfer 
(ka = o). 

The convergence of the numerical solution to the analytical solution as Az is 
reduced is shown in Fig. 3. The analytical solution chosen was that for linear solubility 

1.(3 ~ ~AL'n'ICAL 
/ " , ~  SOLUT,ON 

7 / r -_  
~Z * 0.50a~ !o.4 Y 

0 l ' ' f '- / J / 1 I I I " I ~ ' I  - 
15 16 17 18 l g  20  21 22 

T ime ,  t, sec  

Fig. 3. Convergence of the numerical solution holding At constant and changing Az. 

with no pressure drop and no longitudinal diffusion (c/. FUNK AND HOUGHTON II, 

equation (Io)). 
The effect ot reducing At  is illustrated by taking the case of longitudinal disper- 

sion in a tube with no packing governed by the equation 

OX OX OX "~ 
- -  ~- u ~  = E - -  (55) Ot ' Oz Oz 'z 
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Subject to the initial and boundary conditions of Fig. 2, the analytical solution is 
easily shown to be (c/. BOURNIA, COULL AND HOUGHTON17) ; 

x = ½ erf \ ~ ]  + ½ err ~ t  (56) 

The numerical solution of eqn. (55) can be obtained from the computer program 
merely by setting ka = o and dP/dz = o in the coefficients of the difference equations 
(35) and (36). The effect of lowering At shown by Fig. 4 is to reduce the accuracy, 
which is the converse of what is expected. This phenomenon has been noted by  
REIHING AND CURLEE ls, who have suggested that  there is some opt imum At for the 

['~..~ANALYTICAL 
C SOLm'to~ ~ 

0.~ I • o.0911¢ ¢t 
'1o 
"~ ae 
.~) • . 

o.4 

_o 
:~ a 2  

9 10 11 12 13 
Tinne, t ,  sec 

Fig. 4. Convergence of the numerical solution holding zJz constant and changing At. 

best accuracy. REIHING AND CURLEE point out that  the difference equation for pure 
transport  (i.e., eqn. (55) in difference form with E ---- o) is most accurate when At 
is the maximum allowable value, since the relation u = Az/At must  also be satisfied. 
However, the difference equation for pure diffusion (i.e., eqn. (55) in difference form 
with u = o) becomes more accurate as At tends to zero within the stability criterion. 
In the present case the opt imum At has been generally found to be the maximum At 
allowable for stability, an observation that  also agrees with the findings of REIHING 

AND CURLEE. Hence in all cases the stability and the accuracy have been optimized 

by making At only slightly less than that  demanded by eqns. (53) and (54). By thus 
maximizing At, it has been found that  the numerical solutions are accurate enough to 
provide a reliable semi-quantitative picture of the effect of various parameters on the 
performance of gas-liquid chromatographic columns. 

EFFECT OF COLUMN OPERATING CONDITIONS ON THE ELUTION CURVE 

The IBM-7o 4 computer  program of the equations of chromatography has been used 
to simulate the behavior of a typical chromatography column under various oper- 
ating conditions. The system chosen was the elution of a pure isobutylene slug with 
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an argon carrier gas using d inonyl  ph tha la te  as the s t a t ionary  phase. The paramete r  

s tudy  was made by  choosing a s t andard  set of operat ing condit ions and  then  changing 

each of the var iables  one at  a t ime, holding all other  condi t ions  cons tan t .  The s t andard  

condit ions chosen were as follow: 

T = 298°K L1 = 5 cm 

P = I a tm.  L 2 - -  L z = I cm 

A ----- 131.2 cm=/cm 3 L3 - -  L2 = 50 cm 

u = 5 c m / s e c  L 4 -  L 3 = I c m  

e = 0.40 X o = 1.oo 

h = 1. 4 • lO -4 cm K 1 = 0.0o114 

DL = 6.7" lO -7 cm~/sec K 2 = o 

Transpor t  t ime wi thout  chromatography = 12.3 sec 

The values of DL and  K 1 at  various temperatures  were taken  from the data  of 

HOUGHTON, KESTEN, FUNK AND COULL 19. 

I. E~ect o] gas film coe~cient, ko 
Fig. 5 shows tha t  the peak mole fraction passes through a m i n i m u m  as ko varies in the 

range o to lO -3 g-mole/sec, cm2.atm., while the peak t ime increases from the t ranspor t  

1.0 
x ~ 

0.8 
u 

~ 0.6 

~ 0.4 

& 
v O.f. 
0 
I[ 

/ ~ k o  = 0 

/ / / ~  k G = l 0-~- m°le/cr~'sec'at m" 

I/ \~ -a k6= lO-Sand lO-z 
: , °  

10 12 14 16 18 20 22 24 
Time,t, sec 

Fig. 5. Effect of gas film coefficient. 

t ime with no chromatography (12.3 sec) to a m a x i m u m  value of 18.5 sec when ka is 

greater than  lO -5. The possible effect of a high gas film resistance on the shape and 

peak t ime of the elut ion curve has not  generally been appreciated.  

2. E~ect o~ longitudinal dispersion 

As E is increased in the range o.o674 to 6.74 cm2/sec, Fig. 6 shows that  the peak 

becomes broader,  bu t  the peak t ime does not  change significantly. I t  is noted tha t  

the longi tudinal  dispersion coefficient E mus t  be at least a factor of ten  greater 

than  the molecular diffusivity (DG = 0.0674 cm2/sec) before the effect becomes 

appreciable. 
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o 1.o 
x 

0.8 

06 ~ E :  o o6~4 cm'/~ 
/ \ ~E = 0.674 

"~ 0.4~ / ~  ,o / / /  / ~ E - -  ~.74 

Time, t, sec 

Fig. 6. Effect of longitudinal dispersion. 

o 1.C 
× 
~ae 

ae 

._. 0.~ 
g 

0 

G 

t .0 C - ~ / ~  

B C 

12 14 16 18 20 22 24 26 
Time, t, sec 

Fig. 7. Effect of a nonlinear solubility isotherm. 

K t . Io* K, • zo s 

A 1.14 o 
B o.14 + "I.O 
C 2.22 - -  1.o8 

x.° O.e 

o.6 

U ~a2 f l hTx 10"5crn56 x I0 -s = 14 x I0 "5 

0 r 
0 20 40 60 80 100 

Time, t, sec 
Fig. 8. Effect of liquid film thickness. 
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3. Effect o/a nonlinear solubility isotherm 

Fig. 7 shows that  departures from ideality in the liquid phase result in considerable 
skewness and tailing in the elution curve with consequent displacement of the peak. 
The direction of the tailing is related to the type of nonlinearity as predicted by 
KEULEMANS 1. 

4. Effect o/liquid l~lm thickness 

As the liquid film thickness is increased, Fig. 8 shows that  the curves become broader 
and more skewed, while the peak time is directly proportional to the film thickness. 
In comparing these curves it has been assumed that  the depth of penetration into 
the liquid phase increases as the liquid film thickness increases. Although this would 
no doubt be true for very thin films, it would certainly not apply to very thick films 
which would essentially behave as semi-infinite media. 

5. Effect o/temperature 

Fig. 9 shows that as temperature increases, the peak time decreases and the curves 
become sharper. As is found in practice, good separation must represent a compromise 
between peak time and band width. 

6. Effect o/slug length 

The areas under the curves of Fig. IO increase in proportion to the increase in slug 
length. The peak time increases because it takes longer for the centerline of a larger 
slug to move to the detector. The curves of Fig. IO closely resemble those obtained 
by PORTER et al. ~° by applying the H.E.T.P. approach to the elution of slugs of 
varying size. 

7. Effect o/ total pressure 

As indicated by Fig. II ,  a tenfold change in total pressure has no significant effect on 
either ' the peak time or peak mole fraction--a fact that  has been verified experimen- 
tally for systems that are relatively ideal. 

8. Effect o/initial slug concentration 

The curves of Fig. 12 are finear multiples of each other; that  is, the curve for X 0 = I 
is merely four times the curves for X 0 = o.25, indicating that slug concentration has 
no effect on the elution curve if X / X  o is the variable. 

9. Effect o/carrier gas vdocity 

Fig. 13 shows that the peak time is inversely proportional to the velocity, as predicted 
by the analytical result of FUNK AND HOUGHTON 11. Further,  Fig. 13 shows that" as the 
peak time increases, the area under the curve apparently increases, a fact easily 
explained by the following mass balance at the detector: 

Area = j ' o  X ~ I  / XoL1P, 
euPo (57) 

Equation (57) shows that  the area increases as the carrier velocity, u, decreases. 

j .  Chrome.tog., 6 (1961) I93-2o8 
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IO. Effect o~ column pressure drop 

Fig. 14 shows tha t  as the outlet  pressure is held constant  and the inlet pressure is 

increased, the peak t ime and the area under  the elution curve increase. The area 
increases simply because a higher inlet pressure means more solute present in the slug. 

The peak t ime increases becauses the interstit ial  velocity decreases according to 

eqn. (3). 
NOTATION 

A 
C 

Ci 

Cm = 

D L =  

E -~ 

h = 

i = 

i = 
ka  = 

mass transfer  area per unit  volume of emp ty  column, cm*/cm 3 

solute concentrat ion in liquid phase, g-mole/cm s 

interfacial solute concentrat ion,  g-mole/cm 3 

solute concentrat ion at lumping point in liquid film, g-mole/cm 3 

molecular diffusivity in liquid phase, cm*/sec 
longitudinal dispersion coefficient, cm2/sec 

liquid film thickness, cm 

distance index in difference equations (z ----- iAz) 

t ime index in difference equations (t = jAr) 

gas film coefficient, g-mole/sec, cm 2. atm. 

K = permeabil i ty of packed bed, dimensionless 

K1, K ,  = constants  in nonlinear isotherm 

K, ,  K~, K4, Ks, Ke, K 7 = pressure-dependent parameters  

L = length, cm 

P = pressure, arm. 

P ,  ---- column inlet Fressure, atm. 

Po = column outlet  pressure, atm. 

R = Universal Gas Constant,  82.06 atm.cm3/g-mole. °K 

t = time, sec 
T = absolute temperature,  °K 

u = axial velocity through voids, cm/sec 
u, = axial velocity through voids at inlet, cm/sec 
X = mole fraction of solute in vapor  phase 

X o  --  mole fraction of solute passing the detector  
X, = mole fraction of solute at gas-l iquid interface 
X o = initial mole fraction of solute in slug 

y = distance into the liquid film, cm 

Y0 = a point in the liquid film, cm 

z = axial distance along column, cm 

~1, c¢2, a3, a,, ~5, ~e, ~7 = pressure-dependent parameters  

ill, fl,, f13, /5,, /35, fie, f17 = parameters  dependent upon pressure and/or  pressure gradient 
$e, ~x  ~- elements of a bounded set of numbers  

A --  incremental change 

e = void fraction 

= viscosity, poise 

j .  Chromatog., 6 (x901) I93 2o,~ 
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S U M M A R Y  

The differential equat ions  of non-ideal  gas- l iquid par t i t ion  chromatography have 

been derived and  simplified by  in t roducing the concept of a lumped l iquid fi lm.The 

result ing equat ions  have been solved numerical ly  by  finite difference methods  using 

an IBM-7o 4 digital  computer .  The s tabi l i ty  and  convergence of the computer  solut ions 

is discussed and  the computer  program is used to simulate the actual  behavior  of a 

typical  column under  various operat ing conditions.  The system chosen for s tudy  was 

the elut ion of a slug of isobutylene with argon as the carrier gas and  d inonyl  phtha la te  

as the s ta t ionary  phase. 
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